Crowd Counting via Weighted VLAD on Dense Attribute Feature Maps

نویسندگان

  • Biyun Sheng
  • Chunhua Shen
  • Guosheng Lin
  • Jun Li
  • Wankou Yang
  • Changyin Sun
چکیده

Crowd counting is an important task in computer vision, which has many applications in video surveillance. Although the regression-based framework has achieved great improvements for crowd counting, how to improve the discriminative power of image representation is still an open problem. Conventional holistic features used in crowd counting often fail to capture semantic attributes and spatial cues of the image. In this paper, we propose integrating semantic information into learning locality-aware feature sets for accurate crowd counting. First, with the help of convolutional neural network (CNN), the original pixel space is mapped onto a dense attribute feature map, where each dimension of the pixel-wise feature indicates the probabilistic strength of a certain semantic class. Then, locality-aware features (LAF) built on the idea of spatial pyramids on neighboring patches are proposed to explore more spatial context and local information. Finally, the traditional VLAD encoding method is extended to a more generalized form in which diverse coefficient weights are taken into consideration. Experimental results validate the effectiveness of our presented method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crowd counting via scale-adaptive convolutional neural network

The task of crowd counting is to automatically estimate the pedestrian number in crowd images. To cope with the scale and perspective changes that commonly exist in crowd images, state-of-the-art approaches employ multi-column CNN architectures to regress density maps of crowd images. Multiple columns have different receptive fields corresponding to pedestrians (heads) of different scales. We i...

متن کامل

Crossing-Line Crowd Counting with Two-Phase Deep Neural Networks

In this paper, we propose a deep Convolutional Neural Network (CNN) for counting the number of people across a line-of-interest (LOI) in surveillance videos. It is a challenging problem and has many potential applications. Observing the limitations of temporal slices used by state-of-the-art LOI crowd counting methods, our proposed CNN directly estimates the crowd counts with pairs of video fra...

متن کامل

Scene Invariant Crowd Segmentation and Counting Using Scale-Normalized Histogram of Moving Gradients (HoMG)

The problem of automated crowd segmentation and counting has garnered significant interest in the field of video surveillance. This paper proposes a novel scene invariant crowd segmentation and counting algorithm designed with high accuracy yet low computational complexity in mind, which is key for widespread industrial adoption. A novel low-complexity, scale-normalized feature called Histogram...

متن کامل

Encoding Feature Maps of CNNs for Action Recognition

We describe our approach for action classification in the THUMOS Challenge 2015. Our approach is based on two types of features, improved dense trajectories and CNN features. For trajectory features, we extract HOG, HOF, MBHx, and MBHy descriptors and apply Fisher vector encoding. For CNN features, we utilize a recent deep CNN model, VGG19, to capture appearance features and use VLAD encoding t...

متن کامل

DecideNet: Counting Varying Density Crowds Through Attention Guided Detection and Density Estimation

In real-world crowd counting applications, the crowd densities vary greatly in spatial and temporal domains. A detection based counting method will estimate crowds accurately in low density scenes, while its reliability in congested areas is downgraded. A regression based approach, on the other hand, captures the general density information in crowded regions. Without knowing the location of ea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1604.08660  شماره 

صفحات  -

تاریخ انتشار 2016